MicroRNA-23a-3p promotes the development of osteoarthritis by directly targeting SMAD3 in chondrocytes.
نویسندگان
چکیده
Osteoarthritis (OA) is a common chronic degenerative joint disease. Progressive destruction of the integrity of articular cartilage is an important pathological feature, but treatment options that reverse this damage have not been developed. According to recent studies, microRNAs have important regulatory roles in the initiation and progression of OA. In the current study, the biological effects of miR-23a-3p and its expression in OA tissues were examined. We found that miR-23a-3p expression was obviously higher and SMAD3 expression was significantly lower in OA cartilage than in normal tissues. The hypomethylation status of CpG islands in the promoter region of miR-23a-3p was confirmed by methylation-specific polymerase chain reaction in OA cartilage tissues. Furthermore, a bioinformatics analysis and luciferase reporter assay identified SMAD3 as a target gene of miR-23a-3p and SMAD3 expression at both the protein and mRNA levels was inhibited by miR-23a-3p. A functional analysis demonstrated that miR-23a-3p overexpression suppresses type II collagen and aggrecan expression, while miR-23a-3p inhibition had the opposite effects. Small interfering RNA-mediated knockdown of SMAD3 reversed the effects of the miR-23a-3p inhibitor on the expression of type II collagen and aggrecan. Our results suggested that miR-23a-3p contributes to OA progression by directly targeting SMAD3, providing a potential therapeutic target for OA treatment.
منابع مشابه
Downregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کاملDown-regulation of microRNA-216b inhibits IL-1β-induced chondrocyte injury by up-regulation of Smad3
Osteoarthritis (OA) is the most common type of joint disease, leading to a major cause of pain and disability. OA is characterized by the continuous degradation of articular cartilage, mainly resulting in an imbalance between synthesis and degradation of articular chondrocyte extracellular matrix (ECM). Aberrant miR-216b expression has been found in multiple cancers. However, the level of miR-2...
متن کاملبررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان
Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...
متن کاملMiR‐29b‐3p promotes chondrocyte apoptosis and facilitates the occurrence and development of osteoarthritis by targeting PGRN
This study was aimed to explore the role of miR-29b-3p and PGRN in chondrocyte apoptosis and the initiation and progress of osteoarthritis (OA). Both miR-29b-3p and PGRN were up-regulated in cartilage tissue from patients with OA. Transfection of miR-29b-3p mimic into rat primary chondrocytes and SW1353 chondrosarcoma cells significantly suppressed PGRN expression and release, induced apoptosis...
متن کاملTargeting microRNA-23a to inhibit glioma cell invasion via HOXD10
Glioma is the most frequent primary brain tumor. Recently, the upregulation of microRNA (miR)-23a was found to be associated with glioma, but the molecular mechanism by which miR-23a promotes glioma growth remains to be unveiled. In the present study, we found that miR-23a was significantly upregulated in glioma tissues compared to their matched adjacent tissues. miR-23a was also highly express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 478 1 شماره
صفحات -
تاریخ انتشار 2016